Compressive spectral embedding: sidestepping the SVD

Dinesh Ramasamy, Upamanyu Madhow
University of California, Santa Barbara

FASTrEmbed: Bypassing the SVD

Implementation considerations

Results

Community detection

- DBLP collaboration network
 - 31,078 authors, 1 million edges
 - ARPACK: Smallest 500 eigenvectors
 - 105 minutes
- Compressive embedding
 - 80-dimensional embedding of 500 eigenvectors
 - 1 minute (12 cores)

Effect of cascading

Pairwise cosine similarity (DBLP)

Pairwise distances preserved

- Community detection on Amazon co-purchasing network
- Payoff saturates with \(j \)
- Effect of cascading: Pairwise cosine similarity (DBLP)

Summary

- Succinctly captures pairwise \(i \), similarity metrics
- Dramatic dimensionality reduction (\(i \ll K \))
- Use more singular vectors for inference
- Speed
 - Parallel implementation
 - ~100 times faster than partial SVD
- Bottom-line: Better, faster inference

Bottlenecks of scale

- More data (Large \(n \)) \(
 \rightarrow\)
 Rich structure \(
 \rightarrow\)
 Many factors (Large \(K \))
- Partial SVD complexity \(O(n^2k) \)

Spectral methods: Workflow

- Singular Value Decomposition step prior for inference
- Recommender systems, clustering, community detection on networks, graph mining, ...

Domain dependent TRANSFORM(input)

- SVD (transformed input)
- \(M = N \times M \) \(\rightarrow\) factor

Transformation

- Adjacency matrix of a graph
- Inference (low-rank)

FastEmbed

Reduce dimensionality

- Kernel projections
- Preserves "similarity" via random projections

Real world matrices are sparse

- Matrix-vector products cheap
- Matrix-products can compute polynomial, etc.

Polynomial approximation of \(f(A) \)

\[f(A) = \sum_{k=0}^{K-1} \alpha_k \phi_k(A) \]

Dimensionality reduction

\[f(A) = \sum_{k=0}^{K-1} \phi_k(A) \]

Polynomial approximation

\[f(A) = \sum_{k=0}^{K-1} \alpha_k \phi_k(A) \]

FastEmbed

**Construct matrix \(M \)

Embedding of rows \(\phi(A) \)

Real world matrices are sparse

- Matrix-vector products cheap
- Matrix-products can compute polynomial, etc.

FastEmbed

**Construct matrix \(M \)

Embedding of rows \(\phi(A) \)

Real world matrices are sparse

- Matrix-vector products cheap
- Matrix-products can compute polynomial, etc.

FastEmbed

**Construct matrix \(M \)

Embedding of rows \(\phi(A) \)

Real world matrices are sparse

- Matrix-vector products cheap
- Matrix-products can compute polynomial, etc.

FastEmbed

**Construct matrix \(M \)

Embedding of rows \(\phi(A) \)

Real world matrices are sparse

- Matrix-vector products cheap
- Matrix-products can compute polynomial, etc.